Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range

Identifieur interne : 002C25 ( Main/Repository ); précédent : 002C24; suivant : 002C26

InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range

Auteurs : RBID : Pascal:11-0263472

Descripteurs français

English descriptors

Abstract

We discuss the design and performance of quantum cascade laser sources based on intra-cavity second harmonic generation operating in at wavelengths shorter than 3.7μm. A passive heterostructure tailored for giant optical nonlinearity is integrated on top of an active region and patterned for quasi-phasematching. We demonstrate operation of λ≃3.6μm, λ≃3.0μm, and λ≃2.6μm devices based on lattice-matched and strain-compensated InGaAs/AlInAs/InP materials. Threshold current densities of typical devices with nonlinear sections are only 10-20% higher than that of the reference lasers without the nonlinear section. Our best devices have threshold current density of 2.2kA/cm2 and provide approximately 35μW of second-harmonic output at 2.95μm at room temperature. The second-harmonic conversion efficiency is approximately 100μW/W2. Up to two orders of magnitude higher conversion efficiencies are expected in fully-optimized devices. Keywords: quantum cascade lasers, second harmonic generation, short wavelength, room temperature, intersubband, giant nonlinear susceptibility, quasi-phase matching.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0263472

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range</title>
<author>
<name sortKey="Belkin, M A" uniqKey="Belkin M">M. A. Belkin</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, The University of Texas at Austin</s1>
<s2>Austin, TX 78758</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Jang, M" uniqKey="Jang M">M. Jang</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, The University of Texas at Austin</s1>
<s2>Austin, TX 78758</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Adams, R W" uniqKey="Adams R">R. W. Adams</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, The University of Texas at Austin</s1>
<s2>Austin, TX 78758</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Austin (Texas)</settlement>
<region type="state">Texas</region>
</placeName>
<orgName type="university">Université du Texas à Austin</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chen, J X" uniqKey="Chen J">J. X. Chen</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Deptartment of Electrical Engineering and MIRTHE, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Charles, W O" uniqKey="Charles W">W. O. Charles</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Deptartment of Electrical Engineering and MIRTHE, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Gmachl, C" uniqKey="Gmachl C">C. Gmachl</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Deptartment of Electrical Engineering and MIRTHE, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Princeton (New Jersey)</settlement>
<region type="state">New Jersey</region>
</placeName>
<orgName type="university">Université de Princeton</orgName>
</affiliation>
</author>
<author>
<name sortKey="Cheng, L W" uniqKey="Cheng L">L. W. Cheng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County</s1>
<s2>Baltimore, MD 21250</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Baltimore, MD 21250</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Choa, F S" uniqKey="Choa F">F.-S. Choa</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County</s1>
<s2>Baltimore, MD 21250</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Baltimore, MD 21250</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, X" uniqKey="Wang X">X. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Adtech Optics, Inc., 18007 Cortney Court</s1>
<s2>City of Industry, CA91748</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>City of Industry, CA91748</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Troccoli, M" uniqKey="Troccoli M">M. Troccoli</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Adtech Optics, Inc., 18007 Cortney Court</s1>
<s2>City of Industry, CA91748</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>City of Industry, CA91748</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vizbaras, A" uniqKey="Vizbaras A">A. Vizbaras</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Walter Schottky Institut, Technische Universitat München</s1>
<s2>Garching 85748</s2>
<s3>DEU</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>85748</wicri:noRegion>
<wicri:noRegion>Technische Universitat München</wicri:noRegion>
<wicri:noRegion>Garching 85748</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Anders, M" uniqKey="Anders M">M. Anders</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Walter Schottky Institut, Technische Universitat München</s1>
<s2>Garching 85748</s2>
<s3>DEU</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>85748</wicri:noRegion>
<wicri:noRegion>Technische Universitat München</wicri:noRegion>
<wicri:noRegion>Garching 85748</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grasse, C" uniqKey="Grasse C">C. Grasse</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Walter Schottky Institut, Technische Universitat München</s1>
<s2>Garching 85748</s2>
<s3>DEU</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>85748</wicri:noRegion>
<wicri:noRegion>Technische Universitat München</wicri:noRegion>
<wicri:noRegion>Garching 85748</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Amann, M C" uniqKey="Amann M">M.-C. Amann</name>
<affiliation wicri:level="1">
<inist:fA14 i1="05">
<s1>Walter Schottky Institut, Technische Universitat München</s1>
<s2>Garching 85748</s2>
<s3>DEU</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>14 aut.</sZ>
</inist:fA14>
<country>Allemagne</country>
<wicri:noRegion>85748</wicri:noRegion>
<wicri:noRegion>Technische Universitat München</wicri:noRegion>
<wicri:noRegion>Garching 85748</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0263472</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0263472 INIST</idno>
<idno type="RBID">Pascal:11-0263472</idno>
<idno type="wicri:Area/Main/Corpus">003036</idno>
<idno type="wicri:Area/Main/Repository">002C25</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0277-786X</idno>
<title level="j" type="abbreviated">Proc. SPIE Int. Soc. Opt. Eng.</title>
<title level="j" type="main">Proceedings of SPIE, the International Society for Optical Engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ambient temperature</term>
<term>Binary compounds</term>
<term>Current density</term>
<term>Gallium Arsenides</term>
<term>Heterostructures</term>
<term>III-V semiconductors</term>
<term>Indium Arsenides</term>
<term>Indium Phosphides</term>
<term>Nonlinear optical susceptibility</term>
<term>Nonlinear optics</term>
<term>Optical frequency conversion</term>
<term>Quantum cascade laser</term>
<term>Quasi-phase matching</term>
<term>Second harmonic</term>
<term>Second harmonic generation</term>
<term>Semiconductor lasers</term>
<term>Strains</term>
<term>Ternary compounds</term>
<term>Threshold current</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Conversion fréquence optique</term>
<term>Génération harmonique 2</term>
<term>Quasi accord phase</term>
<term>Déformation mécanique</term>
<term>Courant seuil</term>
<term>Laser cascade quantique</term>
<term>Laser semiconducteur</term>
<term>Optique non linéaire</term>
<term>Densité courant</term>
<term>Température ambiante</term>
<term>Susceptibilité optique non linéaire</term>
<term>Hétérostructure</term>
<term>Composé ternaire</term>
<term>Gallium Arséniure</term>
<term>Indium Arséniure</term>
<term>Composé binaire</term>
<term>Semiconducteur III-V</term>
<term>Indium Phosphure</term>
<term>Harmonique 2</term>
<term>As Ga In</term>
<term>InP</term>
<term>In P</term>
<term>InGaAs</term>
<term>AlInAs</term>
<term>InGaAs/InP</term>
<term>0130C</term>
<term>4255P</term>
<term>4265K</term>
<term>4265A</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We discuss the design and performance of quantum cascade laser sources based on intra-cavity second harmonic generation operating in at wavelengths shorter than 3.7μm. A passive heterostructure tailored for giant optical nonlinearity is integrated on top of an active region and patterned for quasi-phasematching. We demonstrate operation of λ≃3.6μm, λ≃3.0μm, and λ≃2.6μm devices based on lattice-matched and strain-compensated InGaAs/AlInAs/InP materials. Threshold current densities of typical devices with nonlinear sections are only 10-20% higher than that of the reference lasers without the nonlinear section. Our best devices have threshold current density of 2.2kA/cm
<sup>2</sup>
and provide approximately 35μW of second-harmonic output at 2.95μm at room temperature. The second-harmonic conversion efficiency is approximately 100μW/W
<sup>2</sup>
. Up to two orders of magnitude higher conversion efficiencies are expected in fully-optimized devices. Keywords: quantum cascade lasers, second harmonic generation, short wavelength, room temperature, intersubband, giant nonlinear susceptibility, quasi-phase matching.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0277-786X</s0>
</fA01>
<fA02 i1="01">
<s0>PSISDG</s0>
</fA02>
<fA03 i2="1">
<s0>Proc. SPIE Int. Soc. Opt. Eng.</s0>
</fA03>
<fA05>
<s2>7953</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>Novel in-plane semiconductor lasers X : 25-28 January 2011, San Francisco CA</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>BELKIN (M. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JANG (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ADAMS (R. W.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CHEN (J. X.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CHARLES (W. O.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>GMACHL (C.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>CHENG (L. W.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>CHOA (F.-S.)</s1>
</fA11>
<fA11 i1="09" i2="1">
<s1>WANG (X.)</s1>
</fA11>
<fA11 i1="10" i2="1">
<s1>TROCCOLI (M.)</s1>
</fA11>
<fA11 i1="11" i2="1">
<s1>VIZBARAS (A.)</s1>
</fA11>
<fA11 i1="12" i2="1">
<s1>ANDERS (M.)</s1>
</fA11>
<fA11 i1="13" i2="1">
<s1>GRASSE (C.)</s1>
</fA11>
<fA11 i1="14" i2="1">
<s1>AMANN (M.-C.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>BELYANIN (Alexey A.)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SMOWTON (Peter M.)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>Department of Electrical and Computer Engineering, The University of Texas at Austin</s1>
<s2>Austin, TX 78758</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Deptartment of Electrical Engineering and MIRTHE, Princeton University</s1>
<s2>Princeton, NJ 08544</s2>
<s3>USA</s3>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County</s1>
<s2>Baltimore, MD 21250</s2>
<s3>USA</s3>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Adtech Optics, Inc., 18007 Cortney Court</s1>
<s2>City of Industry, CA91748</s2>
<s3>USA</s3>
<sZ>9 aut.</sZ>
<sZ>10 aut.</sZ>
</fA14>
<fA14 i1="05">
<s1>Walter Schottky Institut, Technische Universitat München</s1>
<s2>Garching 85748</s2>
<s3>DEU</s3>
<sZ>11 aut.</sZ>
<sZ>12 aut.</sZ>
<sZ>13 aut.</sZ>
<sZ>14 aut.</sZ>
</fA14>
<fA18 i1="01" i2="1">
<s1>SPIE</s1>
<s3>USA</s3>
<s9>org-cong.</s9>
</fA18>
<fA20>
<s2>795315.1-795315.7</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA25 i1="01">
<s1>SPIE</s1>
<s2>Bellingham WA</s2>
</fA25>
<fA26 i1="01">
<s0>978-0-8194-8490-1</s0>
</fA26>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21760</s2>
<s5>354000174736470270</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>23 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0263472</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Proceedings of SPIE, the International Society for Optical Engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We discuss the design and performance of quantum cascade laser sources based on intra-cavity second harmonic generation operating in at wavelengths shorter than 3.7μm. A passive heterostructure tailored for giant optical nonlinearity is integrated on top of an active region and patterned for quasi-phasematching. We demonstrate operation of λ≃3.6μm, λ≃3.0μm, and λ≃2.6μm devices based on lattice-matched and strain-compensated InGaAs/AlInAs/InP materials. Threshold current densities of typical devices with nonlinear sections are only 10-20% higher than that of the reference lasers without the nonlinear section. Our best devices have threshold current density of 2.2kA/cm
<sup>2</sup>
and provide approximately 35μW of second-harmonic output at 2.95μm at room temperature. The second-harmonic conversion efficiency is approximately 100μW/W
<sup>2</sup>
. Up to two orders of magnitude higher conversion efficiencies are expected in fully-optimized devices. Keywords: quantum cascade lasers, second harmonic generation, short wavelength, room temperature, intersubband, giant nonlinear susceptibility, quasi-phase matching.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B00A30C</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B40B55P</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B40B65K</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B40B65A</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Conversion fréquence optique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Optical frequency conversion</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Génération harmonique 2</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Second harmonic generation</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Quasi accord phase</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Quasi-phase matching</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Déformation mécanique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Strains</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Courant seuil</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Threshold current</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Laser cascade quantique</s0>
<s5>11</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Quantum cascade laser</s0>
<s5>11</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Laser semiconducteur</s0>
<s5>12</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Semiconductor lasers</s0>
<s5>12</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Optique non linéaire</s0>
<s5>19</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Nonlinear optics</s0>
<s5>19</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Densité courant</s0>
<s5>41</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Current density</s0>
<s5>41</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Température ambiante</s0>
<s5>42</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ambient temperature</s0>
<s5>42</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Susceptibilité optique non linéaire</s0>
<s5>43</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Nonlinear optical susceptibility</s0>
<s5>43</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Hétérostructure</s0>
<s5>47</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Heterostructures</s0>
<s5>47</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Composé ternaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Ternary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Gallium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Gallium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>51</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Indium Arséniure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium Arsenides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>53</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>53</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>54</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>54</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Indium Phosphure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>55</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Indium Phosphides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>55</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Harmonique 2</s0>
<s5>61</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Second harmonic</s0>
<s5>61</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Armónica 2</s0>
<s5>61</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>As Ga In</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>InP</s0>
<s4>INC</s4>
<s5>76</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>In P</s0>
<s4>INC</s4>
<s5>77</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>AlInAs</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>InGaAs/InP</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>0130C</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fC03 i1="27" i2="3" l="FRE">
<s0>4255P</s0>
<s4>INC</s4>
<s5>91</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>4265K</s0>
<s4>INC</s4>
<s5>92</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>4265A</s0>
<s4>INC</s4>
<s5>93</s5>
</fC03>
<fN21>
<s1>178</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>Novel in-plane semiconductor lasers</s1>
<s2>10</s2>
<s3>San Francisco CA USA</s3>
<s4>2011</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C25 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 002C25 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:11-0263472
   |texte=   InGaAs/AlInAs quantum cascade laser sources based on intra-cavity second harmonic generation emitting in 2.6-3.6 micron range
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024